8710

Bypass Mass Flow Controller (MFC) for gases

- Bypass MFC with Capillary technology for nominal flow rates from 5 ml_N/min to 10 l_N/min
- Suitable for aggressive gases
- Fieldbus option

Type 6013

2/2-way valve

Type 8710 can be combined with...

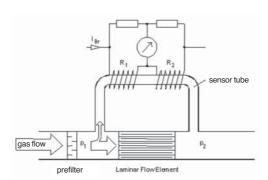
Type 1150 Multi-channel programme controller

Type 0330 3/2 or 2/2way valve

Type 8710 is a unit for the control of the mass flow of gases that is relevant for most applications in Process Technology. The measured value provided by the sensor (see the description on page 2) will be compared in the digital regulation electronics with the predefined set point according to the signal; if a control difference is present, the control value output to the proportional valve will be modified using a PI-control algorithm. In this way, the mass flow can be maintained at a fixed value or a predefined profile can be followed, regardless of pressure variations or other changes in the system. Type 8710 can optionally be calibrated for two different gases, the user is able to switch between these two gases. MFC

The control element, a proportional valve working at low friction guarantees a high sensitivity and a good control characteristics of the unit. Typical application areas are gas dosing or rather the production of gas mixtures in:

- Process technology
- · Environmental technology
- Surface treatment
- Material coating
- Fuel cell technology


Technical data					
Full scale ranges ¹⁾			24V DC ±10 %		
(Q _{nom}) N ₂ equivalent		Voltage tolerance			
Operating media	neutral, non-contaminated gases,	Residual ripple	<5 %		
	other gases on request	Power consumption	max. 7.5 W,		
Max. operating pressure	10 bar (145 psi)		max. 10 W (Fieldbus version)		
(inlet pressure) Calibration medium	depending on the orifice of the valve	Setpoint	0-5 V, 0-10 V, 0-20 mA or 4-20 mA > 20 kΩ (voltage),		
	operating gas or air with conversion factor	Feed impedance			
Medium temperature	-10 to +70°C		< 300 Ω (current)		
Ambient temperature	-10 to +50°C	Output signal	0-5 V, 0-10 V, 0-20 mA or 4-20 mA		
Accuracy	±1.5% of Rdg. ±0.3% F.S.	Max. current, volt. output	10 mA		
(after 30 min. warm up time)		Max. load, current output	600 Ω		
Linearity	±0.1% F.S.	Digital communication	Profibus-DP, DeviceNet, CANopen,		
Repeatability	±0.1% F.S.		RS232/485 (RS interface only with adapter)		
Control range	1:50	Protection class	IP50		
Settling time (t _{95%})	<3 s	Dimensions [mm]	see drawing		
Body material	stainless steel 1.4305	Total weight	ca. 850 g (stainless steel)		
Electr. housing material	Polycarbonate	Mounting position	horizontal or vertical		
Sealing material	FKM, EPDM, FFKM	Light emitting diode display	indication for Power, Limit/Communication,		
Port connections	NPT 1/4, G 1/4, screw-in fitting or	(default, other allocations possible)	Error two		
	sub-base, others on request	Binary input			
Control valve (proportional valve)	valve is closed when power is off	(default, other functions possible)	1. start autotune		
valve orifice	0.05 to 2.0 mm	(default, other functions possible)	2. not assigned		
k _{vs} -value	0.00006 to 0.09 m ³ /h		Ŭ		
Electr. connection	15-pin sub-D plug	Binary output	one relay-output for		
	5-pin M12 plug (only with DeviceNet)	(default, other functions possible)	1. setpoint not reached		
	5-pin M12 socket code B		max. load: 25V, 1A, 25VA		
	(only with Profibus-DP)	Certification	various environmental testing,		
) at standard and different 1 010 have	(-)	(see operating instructions)	electromagnetic compatibility		

¹⁾ at standard conditions 1.013 bar (a) and 0°C

www.burkert.com

Sensor principle

Measurement is based on the bypass principle. A laminar flow element in the main channel generates a small pressure drop. This drives a small flow, proportional to the main flow through the bypass (sensor tube).

Two heater resistors, which are connected in measuring bridge, are wound on this stainless steel tube. In the zero-flow state, the bridge is balanced, but with flow, heat is transported in the flow direction and the bridge becomes unbalanced.

The dynamics of the measurement is determined by the tube walls, which act as a thermal barrier. Through use of suitable software in the controller, measuring times are obtained that are adequate for a large part of the applications (in the range of a few seconds).

With contaminated media, we recommend to install filter elements upstream. This avoids changes in the division ratio between main flow and sensor tube, as well as changes in the heat transmission chaused by deposits on the walls of the sensor tube. With these sensors, even aggressive gases can be controlled, because all essential parts in contact with the medium are fabricated in stainless steel. With this sensor principle it is also possible to convert between different gases.

By using the gas factors it is possible that the accuracy is not within the datasheet specification. For applications which need high accuracy it is recommended to calibrate under application conditions.

Notes regarding the selection of the unit

For the proper choice of the actuator orifice within the MFC, not only the required maximum flow rate Q_{nom} , but also the pressure values *directly* before and after the MFC (p₁, p₂) at this flow rate Q_{nom} should be known. In general, these pressures are not the same as the overall inlet and outlet pressures of the whole plant, because usually there are additional flow resistors (tubing, additional shut-off valves, nozzles etc.) present both before and after the controller.

Please use the request for quotation form on p. 5 to indicate the pressures *directly* before and after the MFC. If these should be unknown or not accessible to a measurement, estimates are to be made by taking into account the approximate pressure drops over the flow resistors before and after the MFC, respectively, at a flow rate of O_{nom} . In addition, please quote the maximum inlet pressure p_{tmax} to be encountered. This data is needed to make sure the actuator is able to provide a close-tight function within all the specified modes of operation.

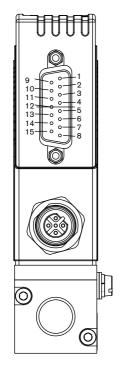
The request for quotation form on page 5 contains the relevant fluid specification. Please use in this way the experience of Bürkert engineers already in the design phase and provide us with a copy of the request containing the data of your application together with your inquiry or order.

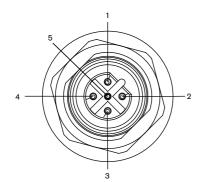
Ordering table for accessories (connectors are not included on the delivery)

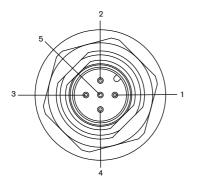
Article	Item no.
15-pin electrical connection	
Sub-D socket 15-pin solder connection	918 274
Sub-D hood for Sub-D socket, with screw locking	918 408
Sub-D socket 15-pin with 5m cable, ass. on one side	787 737
Sub-D socket15-pin with 10m cable, ass. on one side	787 738
Adapter	
Adapter RS232	654 748
Adapter RS485	654 538
PC cable for RS232 9-pin socket/plug 2m	917 039
Adapter, USB	670 639
Communication software "MassFlowCommunicator"	Info at www.burkert.com

burkert

Dimensions [mm]


8710




p. 3/5

PIN connection

15-pole Sub-D plug

Pin	Connection
1	Relay output - NC contact
2	Relay output - NO contact
3	Relay output - C contact
4	GND 24 -V-supply and binary inputs
5	24 V supply +
6	8 V output (For factory use only!)
7	Setpoint input GND
8	Setpoint input +
9	Process value output GND
10	Process value output +
11	DGND (for RS232)
12	Binary input 1
13	Binary input 2
14	RS232 RxD (without driver)
15	RS232 TxD (without driver)

Only with fieldbus

Profibus DP – socket B-encoded M12 (DPV1 max. 12 Mbaud)

Pin	Connection
1	VDD
2	RxD / TxD - N (A-line)
3	DGND
4	RxD / TxD - P (B-line)
5	Shield

DeviceNet, CANopen – plug M12

Pin	Connection
1	Shield
2	VDD
3	DGND
4	CAN_H
5	CAN_L

burkert

Note You can fill out the fields directly in the PDF file before printing out the form.

MFC/MFM applications - request for quotation

Company		Contact perso	n		out the fc
Customer No.		Department			
Address	Tel./Fax				
Postcode/Town		E-mail			
MFC-application MFM-application	Quantity	/	R	equired delive	ry date
Medium data					
Type of gas (or gas proportion in mixtures)					
Density [kg/m ³] ¹		7			
Medium temperature [°C or °F]		_ ℃		°F	
Moisture content [g/m³] Abrasive components / solid particles	no no		yes as follow		
Fluidic data				ws	
		I _N /min ¹⁾		cm _N ³ /min ¹⁾	
Maximum flow Q _{nom}		-			⁽²⁾
		m _N ³/h¹)		cm _s ³ /min (se	
		kg/h		l _s /min (slpm)_,
Minimum flow Q _{nom}		I _N /min ¹⁾		cm _N ³ /min ¹⁾	
		m _N ³ /h ¹⁾		cm _s ³/min (s	ccm) ²⁾
		kg/h		l _s /min (slpm)2)
nlet pressure at Q _{nom} p ₁		barg •			
Dutlet pressure at Q _{nom} p ₂		barg •			
Max. inlet pressure p _{1max}		barg •			
Pipe run (external-Ø)		metric, mm		imperial, inc	:h
MFC/MFM- port connection	without screw-ir	a fitting			
		_	à-thread (DIN ISO 228/1)		
		_	IPT-thread (ANSI >B1.2)		
	with screw-in fit				
	sub-base versio	0			
Ambient temperature		7			
		_ ∘C			
Naterial data					
Sealing material	FKM	EPDM	FFKM		
Electrical data					
Output/input signal	0-20 mA/0-20 r	mA	4-20 mA/4-20 mA		
	 0-10 V/0-10 V		 0-5 V/0-5 V		
	Profibus DP		DeviceNet	CANope	n
Please quote all pressure values as overpressures v		pheric pressure			
at: 1.013 bar (a) and 0°C ²⁾ at: 1.013 bar (a) and 2					
o find your nearest Bürkert facility, click on the o	range box →	www.burkert.c	om		